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Artificial Intelligence
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History of Al

The field of Al research was born at a workshop at Dartmouth College in 1956 where the term "Artificial

Intelligence" was coined by John McCarthy to avoid restricting the term to fields such as cybernetics.

At the workshop, researchers from several disciplines met to clarify, define ideas and establish a

research program concerning “thinking machines”.

They chose the name “Artificial Intelligence” for its broad sense, to avoid restricting the interests of this

field to subjects such as cybernetics, automata theory and complex information processing.

“Dartmouth Summer Research Project on Artificial Intelligence” is now considered by many [1], [2] the seminal event
where Artificial Intelligence (Al) was officially declared a research field.
[1] R.J. Solomonoff, "Artificial intelligence social effects future developments”, Hum. Syst. Manage., vol. 32, pp. 149-153, 1985.

[2] J. Moore, "The dartmouth college artificial intelligence conference: The next fifty years", Al Mag., vol. 27, no. 4, pp. 87-91, 2006.



DEFINITIONS

Today, Al:

(Merriam-Webster Dictionary:) “concerns the theory and development of computerized systems able to imitate and

simulate human intelligence and behavior”

essentially “being human-like rather than becoming human” [3], and

(English Oxford Living Dictionary:) “performing tasks normally requiring human intelligence, such as visual

perception, speech recognition, decision-making, and translation between languages”

[3] B. Marr, The Key Definitions Of Artificial Intelligence (Al) That Explain Its Importance, Feb. 2018, [online] Available:
https://www.tobepublishedforbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-

importance.
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Computer science studies defitions

[4,5,6,7] Define Al researches (called “computational intelligence” researches by some authors [4]):
studies about “intelligent agents” or “rational agents [5]”: any device that perceives its environment and takes actions

that maximize its chance of successfully achieving its goals.

[4] Poole D. and Mackworth A. and Goebel, R. (1998). “Computational Intelligence: A Logical Approach”. New York: Oxford University
Press. ISBN 978-0-19-510270-3.

[5] Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey:
Prentice Hall, ISBN 0-13-790395-2.

They use the term rational agents instead of intelligent systems and write (page. 55): "The whole-agent view is now widely accepted in the
field™

[6] Jackson, Philip (1985): Introduction to Artificial Intelligence (2nd ed.). Dover. ISBN 978-0-486-24864-6.

[7] Legg S. and Hutter M. (15 June 2007). A Collection of Definitions of Intelligence (Technical report). IDSIA. arXiv:0706.3639.
Bibcode:2007arXiv0706.3639L. 07-07.



In [8] Al is defined in a way that seems introducing the field of machine learning:

a (computational agent) “system's ability to correctly interpret external data, to learn from such data, and to use those

learnings to achieve specific goals and tasks through flexible adaptation”.

[8] Kaplan A. and Haenlein M. (2019), "Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations,
and implications of artificial intelligence”. Business Horizons. 62 (1): 15-25. doi:10.1016/j.bushor.2018.08.004
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https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2Fj.bushor.2018.08.004

“Artificial intelligence (Al) can be described as the ability of a computer or robot-controlled

computer to perform tasks that are commonly associated with intelligent creatures”

“scientific discipline that involves building computer systems whose behavior can be

Interpreted intelligently”
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Catching-up

Artificial intelligence (Al), sometimes called machine intelligence, is intelligence

implemented into, and demonstrated by, machines

It differs from Natural intelligence, which is the one displayed by humans and other animals

©
Z
=<
=
E
a
=
=}
)
v
=
g
[£3]
(m]
-
=
7]
=4
=
=
Z
=}




____  COMPUTER
SCIENCE HOW DOES IT WORK?
ARTIFICI
INTELLII
MACHINE
LEARNIN
DATA

learn and act without thé
for human input or instr
to perform specific tasks

SCIENCE

uses scientific methods, processes,
algorithms and systems to

Ints of data to fe ract knowledge and insights from data in

processes such as imagée various forms, both structured and

speech, and language unstructured

recognition
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“m“ Machine Learning (Supervised learning)

Al is formed through learning (by viewing examples).

Once the machine has learned it can view novel (unknown - never seen) data to generate its own

opinions (in the form of predictions or classifications).

| Machine with no
knowledge

e.g.:
Input data = images/video

' depicting a road as viewed
from a car

L e.g.
' Object detector
| algorithm/classifier (e.g.
' CNN, ResNet) withno |
' parameters set. :

____________________________

GROUND TRUTH Labels =

. manual segmentation of cars,
street signals and their
meaning, ...

__________________________________

1
! 1
! 1
! 1
! 1
U 1
U 1
1
1
! 1
! 1
! 1
! 1
U 1
U 1
o+ 1
1
! 1
! 1
! 1
! 1
U 1
U 1
1
1
! 1
! 1
! 1
! 1
U 1
U 1
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Data iIs split into Training and Test sets

Training set:

Training Set : — :
Machine training: learning
algorithms choose the best

Validation Set machine setting

' Learning refers to choosing the

- algorithm parameters that allow
achieving the best performance on

" both the training and the validation set

__________________________________________________

Test Set:

Test Set
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Testing refers to the application of the
trained machine to unseen data

' contained in the test set.
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DATA

70%

30%

' Training data is further slit into:

- Training set (for training the machine through
iterative methods)

- Validation set (for validating the machine and

interrupt learning)

Training DATA

g: Training Set
30% Validation Set

Test Set




WW (Supervised) Training: a simplified training algorithm

/N

Training Set
> Training Machine )
Validation Set \/

FOR Epoch = 1:N The algorithm executes N iterations (epochs); generally N = 1000
o0 For each subsets of the training set: In each epoch, all the subsets composing the training set are analyzed.
. e compute predictions for all the points in the subset Predictions are computed by using the machine at its current status
i
g e measure the prediction error Remember the training set contains the ground truth labels
5 * Adapts the algorithm parameters to diminish the error Different techniques for doing so..
&
5 END
§ o0 compute prediction for all the examples in the validation set and evaluate the error in the validation set.
=
2 o IF the error on the validation set grows or hasn’t been changing for a while TRAINING STOPS,;
&
Z ELSE training continues with the next epoch

END




i

(Supervised) Training

We call it supervised learning because our example have GROUND TRUTH labels

Supervised learning is applied to:

- Neural models (multilayer perceptrons - MLPs, feed forward neural networks — FFNNS)
- Deep neural network

- Support Vector Machines (SVMs)

- Bayesian Trees (BTs) and Random Forests (RFs)

And many other (combinations) of them

https://qgithub.com/LucaCappelletti94/bioinformatics practice

©
Z
=<
=
E
a
=
=}
)
v
=
g
[£3]
a
-
=
7]
=4
=
=
Z
=}



https://github.com/LucaCappelletti94/bioinformatics_practice

“m“ Machine Learning (UNSUPERVISED learning)

Al is formed through learning (by viewing examples WITHOUT GROUND TRUTH LABELS).

Once the machine has learned it can view novel (unknown - never seen) data to generate its own

opinions (in the form of predictions or classifications).

| Machine with no
knowledge

e.g.
Clustering algorithm with no parameter set !

_______________________________________________

e.g.:
Input data = images/video
depicting a road as viewed
from a car
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i

AGAIN

The dataset is split

The algorithm parameters are estimated on the training set

The algorithm is tested on the test set
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Again Data is split into Training and Test sets

Training set:

Training Set : — :
Machine training: learning
algorithms choose the best

Validation Set machine setting

' Learning refers to choosing the

- algorithm parameters that allow
achieving the best performance on

" both the training and the validation set

__________________________________________________

Test Set:

Test Set
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Testing refers to the application of the
trained machine to unseen data

' contained in the test set.




o
Z
<
=
E
a
a
=
)
wn
|
Q
(53]
a
<
E
>
=
=
B
=
5

Here training requires setting the parameters of, e.g clustering algorithms.

Clustering algorithms analyze the data to form groups.

Examples, Arbib, k-means.
Example of parameters required:

- number of clusters to search for
- cluster initialization

- learning rate

________________________ _ Cluster
* representatives

Y
Y
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When the machine learns how to predict classes for each input data we call it Classifier.

Learning a Classification “means” somehow learning a data grouping.

When the machine must infer a continuous number from the data, we call it regressor
(regression algortihms are used for training).

Learning a Regression model means learning a function which associate to each input
point e function.

e.g.: given date, learn the expected temperature in Lombardy (Italy)
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m Max temp
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:I ~.\_\\ ~\\. \'\ \_\ ‘i)
36 °F
20 °F . <| i i \j,:ml.\ — ':.A,.L—‘d e— |____;;'
Jan Feb \ Mar Apr May _'Iy,rL/"JuI_/,-ﬁH?g:.f_\SEE:»_.*\__U:E—‘—\—,'N:;' / Dec
s Euerggg_rﬂmandﬂ*ﬂiféﬁﬁ[:é?éfure in Milan, Italy [c:pynghti@lﬁl?rmﬂwreatherand -Climate.com
Points: Labels (for each point are the correct temperature estimates for each day)
17t February 52° F
2 of April 60° F
151 of July 80° F
13t of September 70° F
31st of December 45° F




Today we experience with a genomic classification problem

https://github.com/LucaCappelletti94/bioinformatics _practice

Points: genome sequence

4 classes: Active Enhancers, Active Promoters, Inactive Enhancers, Inactive Promoters
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https://github.com/LucaCappelletti94/bioinformatics_practice

UNIVERSITA DEGLI STUDI DI MILANO

DNA

Genes influence what we look like on the
outside and how we work on the inside.

They contain the information our bodies need
to make chemicals called proteins.

Proteins form the structure of our bodies, as
well playing an important role in the processes

that keep us alive.

Genes are made of a molecule
(chemical) called DNA, which is short for
‘deoxyribonucleic acid’.

The DNA molecule is a double helix:
that is, two long, thin strands twisted

around each other like a spiral staircase.

— Adenine

= Thymine

Nitrogenous
bases
— Guanine

— Cylosine

Image adapted from: National Human Genome Research Institute.

The DNA double helix showing base pairs
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The sides are sugar and phosphate molecules.

The rungs are pairs of chemicals called 'nitrogenous bases', or

'bases' for short.

There are four types of base: adenine (A), thymine (T), guanine (G)
and cytosine (C).
These bases link in a very specific way: A always pairs with T,

and C always pairs with G.

The DNA molecule has two important properties.

* It can make copies of itself. If you pull the two strands apart,
each can be used to make the other one (and a new DNA
molecule).

* It can carry information. The order of the bases along a

strand is a code - a code for making proteins.

N

Sugar
Phosphate
Backbone

Base pair

Nitrogenous
bases

— Guanine

- Cylosine

Image adapted from: National Human Genome Research Institute.

The DNA double helix showing base pairs
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A gene is a length of DNA that codes for a specific protein.

So, for example, one gene will code for the protein insulin,

which is important role in helping your body to control the

amount of sugar in your blood.

Chromosomes are 46 (types) in each individual, they are

long filaments of genes and proteins with an x-shape.

Cell |:3l,
= L L,r
— - 1
}::}E I. "/;%HF\_‘E Nremoscme
N
Mucleus I‘w;' &

T, ”Ju
M

elgmena

‘J

shutterstock.com « 710795275



transcription factors

1 Activator proteins bind to pieces of
DNA called enhancers. Their binding

causes the DNA to bend, bringing _note |
them neara gene promoter' even ThIS E(jllagram Slrntpllfles tr—l']\e DNA
greatly—promoters, enhancers,
though_they may be thousands of and insulators can be dozens or even
base pairs away. hundreds of base pairs long.
Enhancers {

Other transcription

f tei i
actor proteins 4 Aninsulator can stop the enhancers

from binding to the promoter, if a

2 _()’_chertrans_cription fac!:or proteins protein called CTCF (named for
join the activator proteins, forming the sequence CCCTC, which occurs
a protein complex which binds to in allinsulators) binds to it
the gene promoter.
Methyl grou L
19 psid ——— Insulator

Promoter

5 Methylation, the addition of
a methyl group tothe C
nucleotides, prevents CTCF
from attaching to the insulator,
cTcF turning it off, allowing the
(CCCTCbinding factor) enhancers to bind to the promoter.

3 This protein complex makes it easier
for RNA polymerase to attach to the
promoter and start transcribing
agene.

RNA polymerase

By Kelvin13 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23272278
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We describe each genetic sequence (POINT) of active/inactive enhancer/promoter through epigenomic data

?7? EPIGENOMIC DATA 7?7
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Genotype vs Phenotype

Before, we must see what genotype and phenotypes are

An organism's genotype is the set of genes that it carries.
An organism's phenotype is all of its observable characteristics — which are influenced both by its genotype

and by the environment.

So in defining evolution, we are really concerned with changes in the genotypes that make up a population
from generation to generation.
However, since an organism's genotype generally affects its phenotype, the phenotypes that make up the

population are also likely to change.
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https://evolution.berkeley.edu/evolibrary/glossary/glossary_popup.php?word=genotype
https://evolution.berkeley.edu/evolibrary/glossary/glossary_popup.php?word=phenotype

o
=z
-
o |
=
=
-
]
2
8
=
[ =
W
%
—
T
g
a

-
=
7
(-
«
2
Z
Z

For example, differences in the genotypes can produce different
phenotypes. In these house cats, the genes for ear form are different,
causing one of these cats to have normal ears and the other to have

curled ears.

A change in the environment also can affect the phenotype. Although we
often think of flamingos as being pink, pinkness is not encoded into their

genotype. The food they eat makes their phenotype white or pink




il

Epigenomics

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material

of a cell (epigenome).

Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene

expression without altering the DNA sequence.

For each sequence, epigenomic data express how much that sequence is involved is a list of

genes-protein interactions.
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XAl = Explainable Machine Learning
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IVERSITA DEGLI STUDI DI MILANO

1x1 convolutions

5x5 convolutions

1x1 convolutions

Inception Network (v1)

Extra Loss (avoiding the loss to fade out
while backpropagating)

Inception layer: essentially chooses the best
filter size



QUITE COMPLICATE...

ISN'T IT?
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m“ A. Introduction - The Need for Explainable Al

Watson AlphaGo
User
- = &
o L
. ©Ma'¢{n7'l Ql'
|- Bajer/Flickr . = =

Sensemaking Operations
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e Which architecture is used?

* s this complex architecture really needed?

* |s each feature really important?

* Why did you do that?

* Why not something else?

* How do you obtain something else?

* When do you succeed?

* When do you fail?

Methods for visualizing network architecture: ActiVis

Methods for visualizing network architecture: DeepTest

Explanation vectors

Confidence maps,
Saliency maps,

Relevance Computation

Counterfactuals Explanations

Anchoring explanations (LIME)



ActiVis

A Model Architecture

ropout_0 )

1. Susan starts exploring the
model overview. She selects a
data node (yellow).

B Neuron Activation

Matrix view
By class ' SESS P
DESC s

ENTY

ABBR

HUM

NUM XXEE
LOC %

By user-defined filters Each columnis aneuron.
Darker=stronger activation.

By instance ID

#38 (A N N N N N ee e vV

#47 [ N N B N N N N BN N

#126 enen o0 x

CEENNe 5 fee0 X

4. Inspecting instance #120's activations

reveals it activates neurons in ways
different from correctly classified ones
(#38, #47) and from its class (NUM).

2. Examines activation patterns
for classes and instance subsets

Projected view

e

Correctly Classified }
Misclassified

Clicking aninstancein
instance selection view
addsit to neuron
activation view

C Instance Selection

Correctly classified Misclassified

DESC

EEEEEEEEEEEEEEEEN OO

T E
DRMAEEREAED

EeammamaRmEA=EAE

1000 T2 Y0 ) D) ) ) ) 0

ENTY

ShnuunmE L psEe s DO0Oo0G

EEEEEEEEEEEENEEEE OOODOOO

EEEEENESENEEEEEE OOOOOO

ABBR

L oooo

NUM

.'!!_Instance #120
whatis the diameter of a golf ball?

et

3. Susan explores classification
results for instances (questions).
She wonders why question #120,
asking about numeric values, is
misclassified.



“l“ “ DeepTest

Activated neuron = neuron whose activation is above a threshold thr

number of activated neurons

Neuron Coverage for input X: CoV,¢yron(X)= B

number of activated neurons in layer

Layer Coverage for input X: CoVi,e(X)= T G e i

If a neuron/ layer doesn’t get coverage during training: is it really needed??
If a neuron/layer has very different coverage on small perturbations of input... is it a stable layer??

If a neuron/layer has same coverage on different classes ... is it really discriminating?

AFTER TRAINING: is there a correlation between Neuron/Layer Coverage and classes?

Which are the equivalence classes in the input space is Neuron/Layer Coverage is used as partitioning rule?

@]
Z
=
E
a
=
o]
b~
v
|
Q
=
a
~
=
v
=4
=
=
Z
-




NM“ Explanation Vectors

X = {Xy, ..., X,} are the n input points, where x; € Rd

Y={Yy - ¥Ys}. Vi€ {1,...,C} are the class labels

g (x)=arg min P(YF#c|X=x)
ce{l,...C}

the explanation vector of a data point X, is the derivative in x, of the conditional probability

P(Y+ g*(x,) | X = x), which is:

(o) = o P(Y #g"(x) | X=x)
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If the classifier is a Gaussian Process Classifier the
classification function is explicitly known, therefore we can

compute its derivative.

(c) Local explanation vectors (d) Direction of explanation vectors

Figure 1: Explaining simple object classification with Gaussian Processes

Panel (a) of Figure 1 shows the training data of a simple object classification task and panel (b)
shows the model learned using GPC.* The data is labeled —1 for the blue points and +1 for the red
points. As illustrated in panel (b) the model is a probability function for the positive class which
gives every data point a probability of being in this class. Panel (¢) shows the probability gradient
of the model together with the local gradient explanation vectors. Along the hypotenuse and at the
corners of the triangle explanations from both features interact towards the triangle class while along
the edges the importance of one of the two feature dimensions dominates. At the transition from
the negative to the positive class the length of the local gradient vectors represents the increased
importance of the relevant features. In panel (d) we see that explanations close to the edges of the
plot (especially in the right hand side corner) point away from the positive class. However, panel
(¢) shows that their magnitude is very small. For discussion of this issue see Section 8.
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If the classifier does not explicitly express the function g*(x) it learns:

X ={Xy, ..., X,} are the n input points, where x; ¢ R¢ training

v

g*(x) unknown
Y={yy, .- Y.}, VY €{1,...,C} are the class labels

Create a surrogate classifier

X ={Xq, ..., X,} are the n input points, where x, ¢ RY training

> Paurrogate(97(X) # € | X =x) known!!
Y ={g*(Xy), ..., 9*(X)}, g*(x;) are the labels!
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Explanation vector on surrogate




3 1 / / /
\ 0 10 /{fé’://' 1 / N /%/
= 2 \ s .//, / 4“/ f / < f [j‘/
T > | /SN 3|/ ff
= 118 - 2 0 > /
E N ’ g0
30 MU s DL E’_1 / ./ 8 /
IR / %W/ o i1l
-1 0 1 -1 0 1 -1 0 1
sepal length sepal length sepal length
ORI S e 1 7
L | — l 5 I
= HW“ |/ M ./ = a
N ARNRI 3ol s Y,
«%c § 0 f lj‘ _._Q I _,_CE 0 //
= O ) ) A
§ Q \ o 1 o / s
5 - NT \ 1!
: AN LN 4
g -1 0 1 2 3 -1 0 1 2 3 -1 0 1
' sepal width sepal width petal length
g Figure 3: Scatter plots of the explanation vectors for the test data. Shown are all explanation vectors

for both classes: class 1 containing /ris setosa (shown in blue) and Iris virginica (shown
in red) versus class 0 containing only the species /ris versicolor (shown in green). Note
that the explanations why an Iris flower 1s not an Iris versicolor 1s different for Iris setosa
and [ris virginica.
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Sensitivity analysis

A first approach to identify the most important input features
is sensitivity analysis [77,66,29]. It is based on the model’s lo-
cally evaluated gradient or some other local measure of variation.
A common formulation of sensitivity analysis defines relevance
scores as

Ri(x) = (%)2 (1)

The Taylor decomposition [9,5] is a method that explains the
model’s decision by decomposing the function value f(x) as a sum
of relevance scores. The relevance scores are obtained by identifi-
cation of the terms of a first-order Taylor expansion of the function
at some root point X for which f(x) = 0. The root point should re-
move the information in the input that causes f(x) to be positive,
e.g. the pattern in a given input image that is responsible for class
membership as modeled by the function. Taylor expansion lets us
rewrite the function as:

f@) =0 Rix) +0(xxT)
where the relevance scores

af -
Ri(x) = Pyl N (Xi — Xj)
i x=



NM“ Saliency Maps

A trained network is defined by fixed parameters 3

The activation h;; of a unit i at layer | depends both on the parameters 3 and on the input x
Ny =Ny (84 X)

Since 3§ s fixed, to find the x that maximize h;;, find x that maximizes h;;

by computing the derivative and finding a (local) maxima.

In the nets.. Derivative is computed by backpropagation!!

And Therefore...
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2. relevance propagation
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Instance-level explanations (Layer-wise relevance propagation alias LRP)

input

1. forward computation

input — LRP guided backprop

2] 7 [0 AT
E = i ( 4
n o & 6 24
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i

backprop. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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©~ ©~ AN Fig. 10. LRP applied to a convolutional DNN trained on MNIST, and resulting expla-
O:—‘ ----------------- O . O > O < . - nations for selected digits. Red and blue colors indicate positive and negative rele-
S - - - vance scores respectively. Heatmaps are shown next to those produced by guided
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Fig. 11. Diagram of the LRP procedure (here after three steps of redistribution). Red
arrows indicate the relevance propagation flow. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)




I
“l““ Wha makes a good visual explanation of a model?

a ‘good’ visual explanation of a model for justifying any target category
should be:
(a) Class — discriminative (i.e. localize the category in the image)

(b) high-resolution (i.e. capture fine-grained detail)

LRP has high-resolution but is not class-discriminative

CAM and grad-CAM are also class discriminative!
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“lm“ CAM: Class Activation Mapping on ConvNets (with Global Max Pooling??)

Net composed by several conv feature maps -> GMP -> fullyconnected layer
(softmax activation)

Olw [0

A 1
( l\\ Australian
g 8 g é GuP O W, /’O terrier
N N N y : '
Vv V V O Wll
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k__ -
27277227277

Class Activation Mapping

Class
Activation
Map

' (Australian terrier)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.
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““““ YES with Global Average Pooling (GAP)

Net composed by several conv feature maps > GAP -> fully connected layer
(softmax activation)
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( ustralian
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Class Activation Mapping

Class
Activation
Map

. (Australian terrier)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.
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f.(x,y). K Units K Units C output Units

k ={1,...,K} on each point (x,y) k={1,...K} ¢=11...C}
N
/ - =\ |Australian

C C C G </ |terrier

N N 4N 4 dl

v L g |
%
f.(X,y) has a value depending on some After training w,¢ is
visual pattern within its receptive field fixed



Substituting max pooling with average pooling you can:

For a given image, let fi.(z,y) represent the activation
of unit £ in the last convolutional layer at spatial location
(z,y). Then, for unit k£, the result of performing global
average pooling, F* is 2wy fe(z,y). Thus, for a given
class ¢, the input to the softmax, S, is >, w§ F} where w§
is the weight corresponding to class ¢ for unit k. Essentially,
wy. indicates the importance of Fj, for class c¢. Finally the
output of the softmax for class ¢, P, is given by z(x<p;<(r?(s) :
Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fj, = >, fx(,y) into the class score,

S., we obtain
Se _Zw Zﬁ‘ (z,y)

A drawback of CAM is that it requires feature maps to directly precede softmax

= Z Z wi fi(z,y). (1) layers, so it is only applicable to a particular kind of CNN architectures
.y k
o performing global average pooling over convolutional maps immediately prior
We define M. as the class activation map for class ¢, where
each spatial element is given by to prediction (conv feature maps -> global average pooling -> softmax layer)
M.(z,y) Z wy fr(z,y). (2)
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Thus, S. = >_, , Mc(x,y), and hence M. (z,y) directly
indicates the 1mp0rtdnce of the activation at spatial grid
(z,y) leading to the classification of an image to class c.
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Guided Grad-CAM

gradCAM generalized to different networks

1 : 1 ’f
'  <€—— Gradients P c |Tiger Cat
E —— Y Activations E A
L K ! B 0%
Wi ," FC Layers y
Guided Backpropagation s L
r 4 s
Rectified Conv ," e -,A K
Guided Backprop Feature Maps A . EZ! } >
_ : par” 2
1 Bran :> A cat lying on
RNN/LSTM
Any / the ground
Task-specific| «
Network
//——_ =
Is there a cat? P e FC Layer -
Question |
C [Yes
y

Image Classification

(or)

Image Captioning

(or)

Visual
Question Answering

(or)

Fig. 2: Grad-CAM overview: Given an image and a class of interest (e.g., ‘tiger cat’ or any other type of differentiable output) as input, we forward propagate the image
through the CNN part of the model and then through task-specific computations to obtain a raw score for the category. The gradients are set to zero for all classes except the
desired class (tiger caf), which is set to 1. This signal is then backpropagated to the rectified convolutional feature maps of interest, which we combine to compute the coarse
Grad-CAM localization (blue heatmap) which represents where the model has to look to make the particular decision. Finally, we pointwise multiply the heatmap with guided
backpropagation to get Guided Grad-CAM visualizations which are both high-resolution and concept-specific.




By choosing the score that is propagated back you compute counterfactuals (??7?)

(a) Original Image (b) Cat Counterfactual exp () Dog Counterfactual exp

UNIVERSITA DEGLI STUDI DI MILANO

Fig. 3: Countertactual Explanations with Grad-CAM
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Counterfactuals?

A counterfactual explanation describes a causal situation in the form:

“If X had not occurred, Y would not have occurred”.

For example: “If | hadn’t taken a sip of this hot coffee, | wouldn't have burned my tongue”.
Event Y is that | burned my tongue; cause X is that | had a hot coffee.

Thinking in counterfactuals requires imagining a hypothetical reality that contradicts the observed facts

(e.g. a world in which I have not drunk the hot coffee), hence the name “counterfactual”.

The ability to think in counterfactuals makes us humans so smart compared to other animals.

https://christophm.qgithub.io/interpretable-ml-book/



https://christophm.github.io/interpretable-ml-book/
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How to compute couterfactuals for a point p:

Find the nearest point to p () that gets a different prediction from

your black box.
Find the features (fgi;) Of ey differing from those of p

Event Y is the classification score for p. Cause X is that features f; of

X have values different than the f, of p.

Counterfactuals allow computing suggestions!!

To compute p,ey::

find the nearest training point pTrain,, which belongs to the other

class

Move from pTrain,.,; to p until there a change of classification




Anchors

Anchor values are those values that anchor the prediction.

Based on the assumption that a model is linear in its neighborhood.

Point neighborhood that gets the
same classification score of p
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NM“ Learning an interpretable surrogate (model induction)

Create a suite of machine learning Learning Techniques (today)

techniques that produce more Explainability

Neural Nets J——
-~ Graphical

explainable models, while
. .. . . Deep
maintaining a high level of learning Learning , [ Ensemble

performance

Decision -
T L -
SVMs e Explainability
o
z
3
a Ve
Sl e
5 i } l i i 1 i B AOG =A_nd—Orgraph _
= HBN = hierarchical Bayesian Networks
= /” ' f';' " * * ‘ CRF = Conditional random fields
& Deep Explanation Interpretable Models MLN = Markov Linear Networks
o Modified deep learning Techniques to learn more
techniques to learn structured, interpretable, causal

explainable features models




“lm“ LIME for instance-level explanations

For each point to be explained, given a trained black-box, LIME trains local surrogate

models:
Perturb the dataset and get the black box predictions for these new points.

Weight the new samples according to their proximity to the instance of interest.

Train a weighted, interpretable model on the dataset with the variations.

Explain the prediction by interpreting the local model.

The surrogate must have a good local accuracy
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